Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays).

نویسندگان

  • Peng Yu
  • Frank Hochholdinger
  • Chunjian Li
چکیده

BACKGROUND AND AIMS Shoot-borne roots contribute to most of the nutrient uptake throughout the life cycle of maize (Zea mays). Compared with numerous studies with embryonic roots, detailed information on the phenotypic plasticity of shoot-borne roots in response to a heterogeneous nitrogen supply is scarce. The present study therefore provides a comprehensive profile of fine-scale plastic responses of distinct root types to localized high nitrate supply. METHODS Seedlings of the maize inbred line B73 were grown in split-root systems. The anatomy and morphological plasticity of the primary root and the roots initiated from the 2nd, 5th and 7th shoot nodes, and their lateral roots, were studied in response to local high nitrate supply to one side of the root system. KEY RESULTS In contrast to the insensitivity of axial roots, local high nitrate supply increased the length of 1st-order lateral roots on the primary root and the three whorls of shoot-borne roots at different growth stages, and increased the density of 1st-order lateral roots on the 7th shoot-borne root after silking. The length and density of 2nd-order lateral roots on the three whorls of shoot-borne roots displayed a more flexible response to local high nitrate than 1st-order lateral roots. Root diameter and number, and total area and diameter of metaxylem vessels increased from the primary root to early and then later developed shoot-borne roots, which showed a positive relationship with shoot growth and N accumulation. CONCLUSIONS Maize axial roots and lateral roots responded differently to local high nitrate, and this was related to their function. The extent of morphological plasticity of lateral roots in response to local high nitrate depended on the initiation time of the shoot-borne roots on which the lateral roots developed. Morphological plasticity was higher on 2nd-order than on 1st-order lateral roots. The results suggest that higher order lateral root branching might be a potential target for genetic improvement in future maize breeding.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation.

Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h...

متن کامل

NO homeostasis is a key regulator of early nitrate perception and root elongation in maize*

Crop plant development is strongly dependent on nitrogen availability in the soil and on the efficiency of its recruitment by roots. For this reason, the understanding of the molecular events underlying root adaptation to nitrogen fluctuations is a primary goal to develop biotechnological tools for sustainable agriculture. However, knowledge about molecular responses to nitrogen availability is...

متن کامل

Responses of root growth and distribution of maize to nitrogen application patterns under partial root-zone irrigation

A field experiment was carried out to investigate the effects of varying nitrogen (N) supply andirrigation methods on the root growth and distribution of maize (Zea mays L.) in Wuwei,northwest China in 2011 and 2012. The irrigation treatments included alternate furrow irrigation(AI), fixed furrow irrigation (FI) and conventional furrow irrigation (CI). The N supply treatmentsincluded alternate ...

متن کامل

Nitric oxide is involved in nitrate-induced inhibition of root elongation in Zea mays.

BACKGROUND AND AIMS Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. METHODS Maize seedlings grown in varying concentrations of nitrate for 7 d wer...

متن کامل

Glutamine Synthetase and Ferredoxin-Dependent Glutamate Synthase Expression in the Maize (Zea mays) Root Primary Response to Nitrate (Evidence for an Organ-Specific Response).

To define further the early, or primary, events that occur in maize (Zea mays) seedlings exposed to NO3-, accumulation of chloroplast glutamine synthetase (GS2; EC 6.3.1.2) and ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1), transcripts were examined in roots and leaves. In roots, NO3- treatment caused a rapid (within 30 min), transient, and cycloheximide-independent accumulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of botany

دوره 116 5  شماره 

صفحات  -

تاریخ انتشار 2015